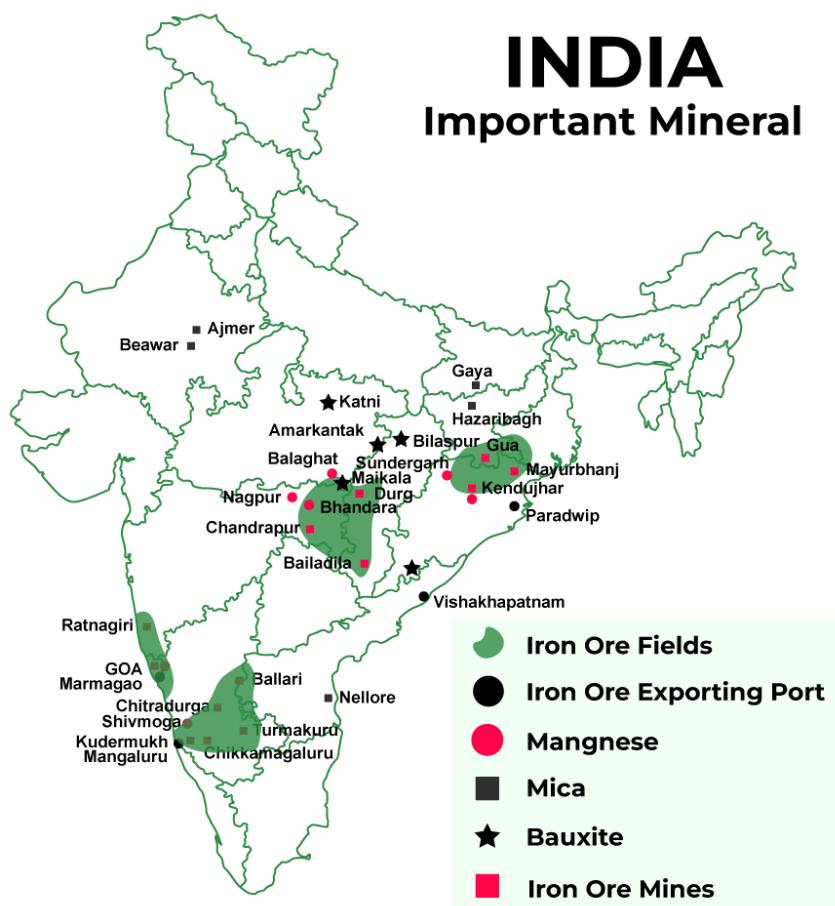


India is endowed with a rich variety of mineral resources due to its varied geological structure. Bulk of the valuable minerals are products of Pre-Paleozoic age and are mainly associated with metamorphic and igneous rocks of the peninsular India. The vast alluvial plain tract of north India is devoid of minerals of economic use. The mineral resources provide the country with the necessary base for industrial development.



Metallic minerals are the sources of metals. Iron ore, gold produce metal and are included in this category. Metallic minerals are further divided into ferrous and non-ferrous metallic minerals. Ferrous, as you know, refers to iron. All those minerals which have iron content are ferrous such as iron ore itself and those which do not have iron content are non-ferrous such as copper, bauxite, etc.

Non-metallic minerals are either organic in origin such as fossil fuels also known as mineral fuels which are derived from the buried animal and plant life such as coal and petroleum. Other type of non-metallic minerals is inorganic in origin such as mica, limestone and graphite, etc.

Minerals have certain characteristics.

- These are unevenly distributed over space.
- There is inverse relationship in quality and quantity of minerals i.e. good quality minerals are less in quantity as compared to low quality minerals.
- The third main characteristic is that all minerals are exhaustible over time.
- These take long to develop geologically and they cannot be replenished immediately at the time of need.

Distribution of Minerals in India

Most of the **metallic minerals** in India occur in the peninsular plateau region in the old crystalline rocks. Over 97 per cent of **coal reserves** occur in the valleys of Damodar, Sone, Mahanadi and Godavari. Petroleum reserves are located in the sedimentary basins of Assam, Gujarat and Mumbai High i.e. off-shore region in the Arabian Sea. New reserves have been located in the Krishna-Godavari and Kaveri basins. Most of the major mineral resources occur to the east of a line linking Mangaluru and Kanpur.

Minerals are generally concentrated in three broad belts in India. There may be some sporadic occurrences here and there in isolated pockets. These belts are :

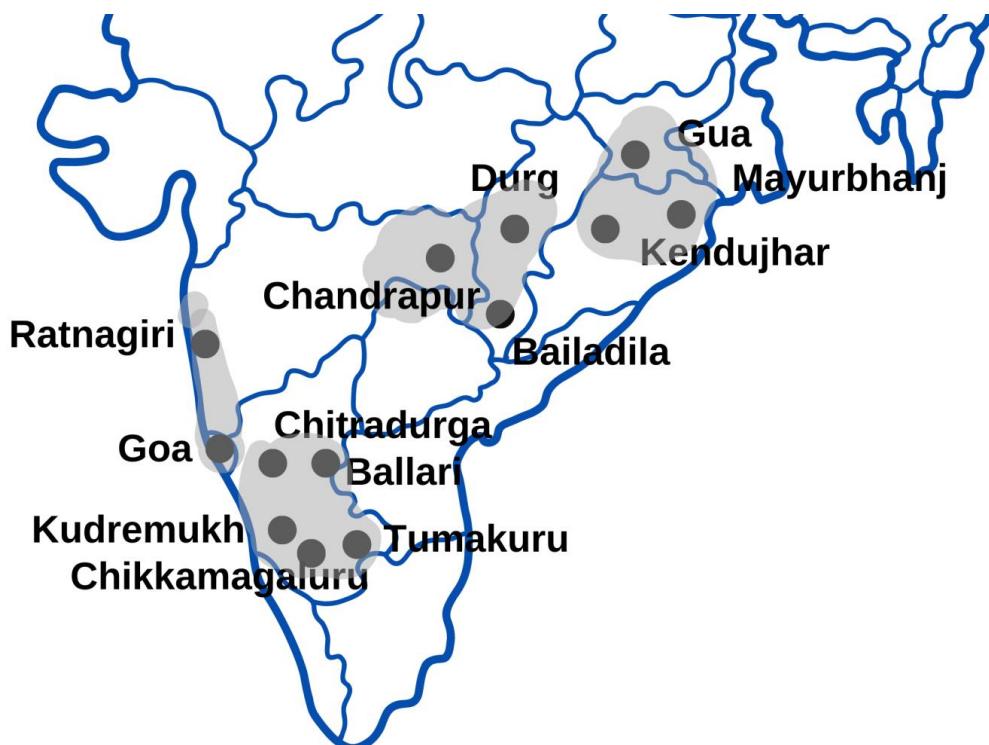
The North-Eastern Plateau Region This belt covers Chhotanagpur (Jharkhand), Odisha Plateau, West Bengal and parts of Chhattisgarh. It has variety of minerals viz. iron ore, coal, manganese, bauxite, mica. **The South-Western Plateau Region** This belt extends over Karnataka, Goa and contiguous Tamil Nadu uplands and Kerala. This belt is rich in ferrous metals and bauxite. It also contains high grade iron ore, manganese and limestone. This belt lacks in coal deposits except Neyveli lignite.

This belt does not have as diversified mineral deposits as the north-eastern belt. Kerala has deposits of monazite and thorium, bauxite clay. Goa has iron ore deposits.

The North-Western Region

This belt extends along Aravalli in Rajasthan and part of Gujarat and minerals are associated with Dharwar system of rocks. Copper, zinc have been major minerals. Rajasthan is rich in building stones i.e. sandstone, granite, marble. Gypsum and Fuller's earth deposits are also extensive. Dolomite and limestone provide raw materials for cement industry. Gujarat is known for its petroleum deposits. Gujarat and Rajasthan both have rich sources of salt.

The Himalayan belt is another mineral belt where copper, lead, zinc, cobalt and tungsten are known to occur. They occur on both the eastern and western parts. Assam valley has mineral oil deposits. Besides oil resources are also found in off-shore-areas near Mumbai Coast (Mumbai High).


Ferrous Mineral

Ferrous minerals such as iron ore, manganese, chromite, etc., provide a strong base for the development of metallurgical industries. Our country is well-placed in respect of ferrous minerals both in reserves and production.

Iron Ore

India is endowed with fairly abundant resources of iron ore. It has the largest reserve of iron ore in Asia. The two main types of ore found in our country are **hematite and magnetite**. It has great demand in international market due to its superior quality. The iron ore mines occur in close proximity to the coal fields in the north-eastern plateau region of the country which adds to their advantage. About 95 per cent of total reserves of iron ore is located in the States of Odisha, Jharkhand, Chhattisgarh, Karnataka, Goa, Telangana, Andhra Pradesh and Tamil Nadu. In Odisha, iron ore occurs in a series of hill ranges in Sundergarh, Mayurbhanj and Jhar.

The important mines are Gurumahisani, Sulaipet, Badampahar (Mayurbhaj), Kiruburu (Kendujhar) and Bonai (Sundergarh). Similar hill ranges, Jharkhand has some of the oldest iron ore mines and most of the iron and steel plants are located around them. Most of the important mines such as Noamundi and Gua are located in Poorbi and Pashchimi Singhbhum districts. This belt further extends to Durg, Dantewara and Bailadila. Dalli, and Rajhara in Durg are the important mines of iron ore in the country. In Karnataka, iron ore deposits occur in Sandur-Hospet area of Ballari district, Baba Budan hills and Kudremukh in Chikkamagaluru district and parts of Shivamogga, Chitradurg and Tumakuru districts. The districts of Chandrapur, Bhandara and Ratnagiri in Maharashtra, Karimnagar and Warangal district of Telangana, Kurnool, Cuddapah and Anantapur districts of Andhra Pradesh, Salem and Nilgiris districts of Tamil Nadu are other iron mining regions. Goa has also emerged as an important producer of iron ore.

Manganese

Manganese is an important raw material for smelting of iron ore and also used for manufacturing ferro alloys. Manganese deposits are found in almost all geological formations, however, it is mainly associated with Dharwar system. Odisha is the leading producer of Manganese. Major mines in Odisha are located in the central part of the iron ore belt of India, particularly in Bonai, Kendujhar, Sundergarh, Gangpur, Koraput, Kalahandi and Bolangir.

Karnataka is another major producer and here the mines are located in Dharwar, Ballari, Belagavi, North Canara, Chikmagaluru, Shivamogga, Chitradurg and Tumkur. Maharashtra is also an important producer of manganese which is mined in Nagpur, Bhandara and Ratnagiri districts. The disadvantage to these mines is that they are located far from steel plants. The manganese belt of Madhya Pradesh extends in a belt in Balaghat-Chhindwara-Nimar-Mandla and Jhabua districts. Telangana, Goa, and Jharkhand are other minor producers of manganese.

Non-Ferrous Minerals

India is poorly endowed with non-ferrous metallic minerals except bauxite.

Bauxite

Bauxite is the ore which is used in manufacturing of aluminium. Bauxite is found mainly in tertiary deposits and is associated with laterite rocks occurring extensively either on the plateau or hill ranges of peninsular India and also in the coastal tracts of the country. Odisha happens to be the largest producer of Bauxite. Kalahandi and Sambalpur are the leading producers. The other two areas which have been increasing their production are Bolangir and Koraput. The plateau of Jharkhand in Lohardaga have rich deposits. Gujarat, Chhattisgarh, Madhya Pradesh and Maharashtra are other major producers. Bhavanagar, Jamnagar in Gujarat have the major deposits. Chhattisgarh has bauxite deposits in Amarkantak plateau while Katni-Jabalpur area and Balaghat in M.P. have important deposits of bauxite. Kolaba, Thane, Ratnagiri, Satara, Pune and Kolhapur in Maharashtra are important producers. Tamil Nadu, Karnataka and Goa are minor producers of bauxite.

Copper

Copper is an indispensable metal in the electrical industry for making wires, electric motors, transformers and generators. It is alloyable, malleable and ductile. It is also mixed with gold to provide strength to jewellery. The Copper deposits mainly occur in Singhbhum district in Jharkhand, Balaghat district in Madhya Pradesh and Jhunjhunu and Alwar districts in Rajasthan. Minor producers of Copper are Agnigundala in Guntur District (Andhra Pradesh), Chitradurg and Hasan districts (Karnataka) and South Arcot district (Tamil Nadu).

Non-metallic Minerals

Among the non-metallic minerals produced in India, mica is the important one. The other minerals extracted for local consumption are limestone, dolomite and phosphate.

Mica

Mica is mainly used in the electrical and electronic industries. It can be split into very thin sheets which are tough and flexible. Mica in India is produced in Jharkhand, Andhra Pradesh, Telangana and Rajasthan followed by Tamil Nadu, West Bengal and Madhya Pradesh.

In Jharkhand high quality mica is obtained in a belt extending over a distance of about 150 km, in length and about 22 km, in width in lower Hazaribagh plateau. In Andhra Pradesh, Nellore district produces the best quality mica. In Rajasthan mica belt extends for about 320 kms from Jaipur to Bhilwara and around Udaipur. Mica deposits also occur in Mysore and Hasan districts of Karnataka, Coimbatore, Tiruchirapalli, Madurai and Kanniyakumari in Tamil Nadu, Alleppey in Kerala, Ratnagiri in Maharashtra, Purulia and Bankura in West Bengal.

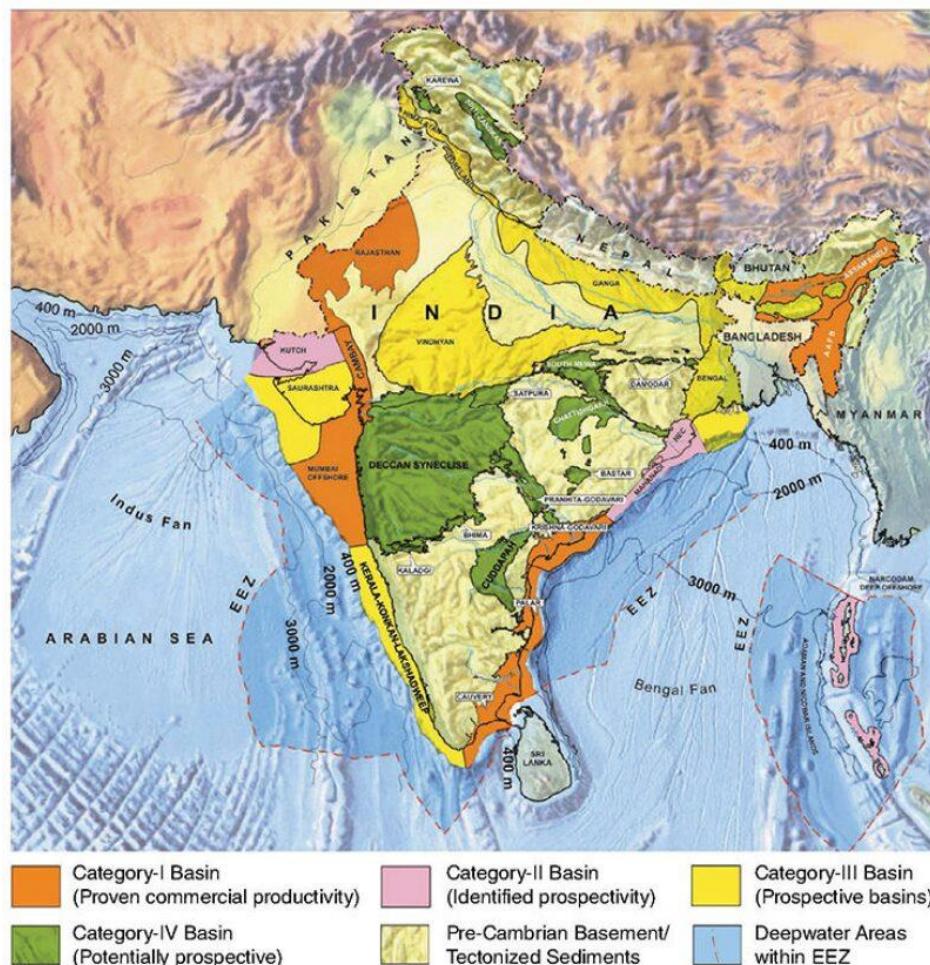
Energy Resources

Mineral fuels are essential for generation of power, required by agriculture, industry, transport and other sectors of the economy. Mineral fuels like coal, petroleum and natural gas (known as fossil fuels), nuclear energy minerals, are the conventional sources of energy. These conventional sources are exhaustible resources.

Coal

Coal is one of the important minerals which is mainly used in the generation of thermal power and smelting of iron ore. Coal occurs in rock sequences mainly of two geological ages, namely Gondwana and tertiary deposits. About 80 per cent of the coal deposits in India is of **bituminous type** and is of non-coking grade. The most important Gondwana coal fields of India are located in Damodar Valley.

They lie in Jharkhand-Bengal coal belt and the important coal fields in this region are Raniganj, Jharia, Bokaro, Giridih, Karanpura. Jharia is the largest coal field followed by Raniganj. The other river valleys associated with coal are Godavari, Mahanadi and Sone. The most important coal mining centres are Singrauli in Madhya Pradesh (part of Singrauli coal field lies in Uttar Pradesh), Korba in Chhattisgarh, Talcher and Rampur in Odisha, Chanda-Wardha, Kamptee and Bander in Maharashtra and Singareni in Telangana and Pandur in Andhra Pradesh.


Tertiary coals occur in Assam, Arunachal Pradesh, Meghalaya and Nagaland. It is extracted from Darangiri, Cherrapunji, Mewlong and Langrin (Meghalaya); Makum, Jaipur and Nazira in upper Assam, Namchik – Namphuk (Arunachal Pradesh) and Kalakot (Jammu and

Kashmir). Besides, the brown coal or lignite occur in the coastal areas of Tamil Nadu, Pondicherry, Gujarat and Jammu and Kashmir.

Petroleum

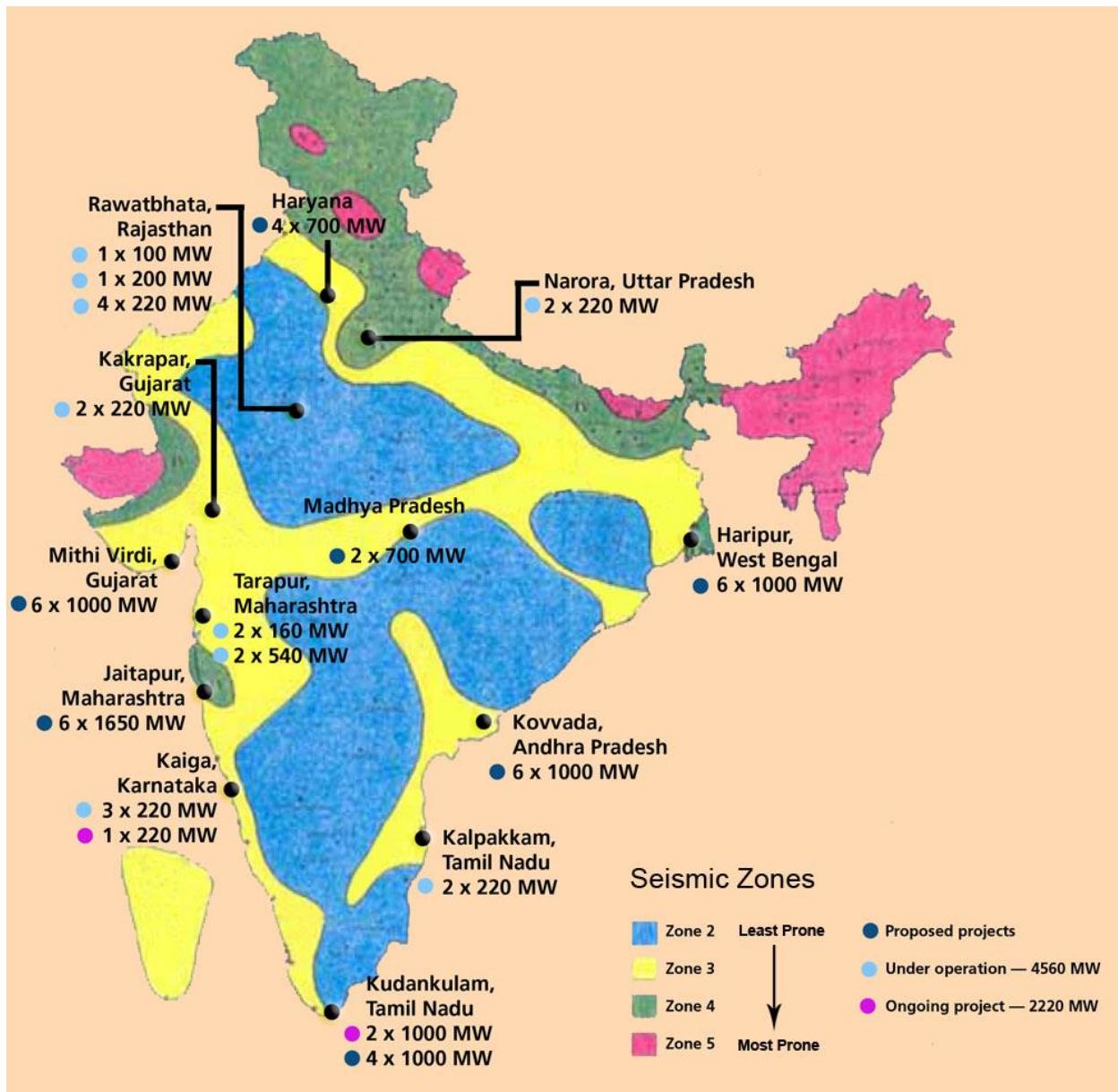
Crude petroleum consists of hydrocarbons of liquid and gaseous states varying in chemical composition, colour and specific gravity. It is an essential source of energy for all internal combustion engines in automobiles, railways and aircraft. Its numerous by-products are processed in petrochemical industries such as fertiliser, synthetic rubber, synthetic fibre, medicines, vaseline, lubricants, wax, soap and cosmetics. Crude petroleum occurs in sedimentary rocks of the tertiary period. Oil exploration and production was systematically taken up after the Oil and Natural Gas Commission was set up in 1956. Till then, the Digboi in Assam was the only oil producing region but the scenario has changed after 1956. In recent years, new oil deposits have been found at the extreme western and eastern parts of the country. In Assam, Digboi, Naharkatiya and Moran are important oil producing areas. The major oil fields of Gujarat are Ankaleshwar, Kalol, Mehsana, Nawagam, Kosamba and Lunej. Mumbai High which lies 160 km off Mumbai was discovered in 1973 and production commenced in 1976. Oil and natural gas have been found in exploratory wells in Krishna-Godavari and Kaveri basin on the east coast.

Oil extracted from the wells is crude oil and contains many impurities. It cannot be used directly. It needs to be refined. There are two types of refineries in India:

(a) field based and (b) market based. Digboi is an example of field based and Barauni is an example of market based refinery.

Natural Gas

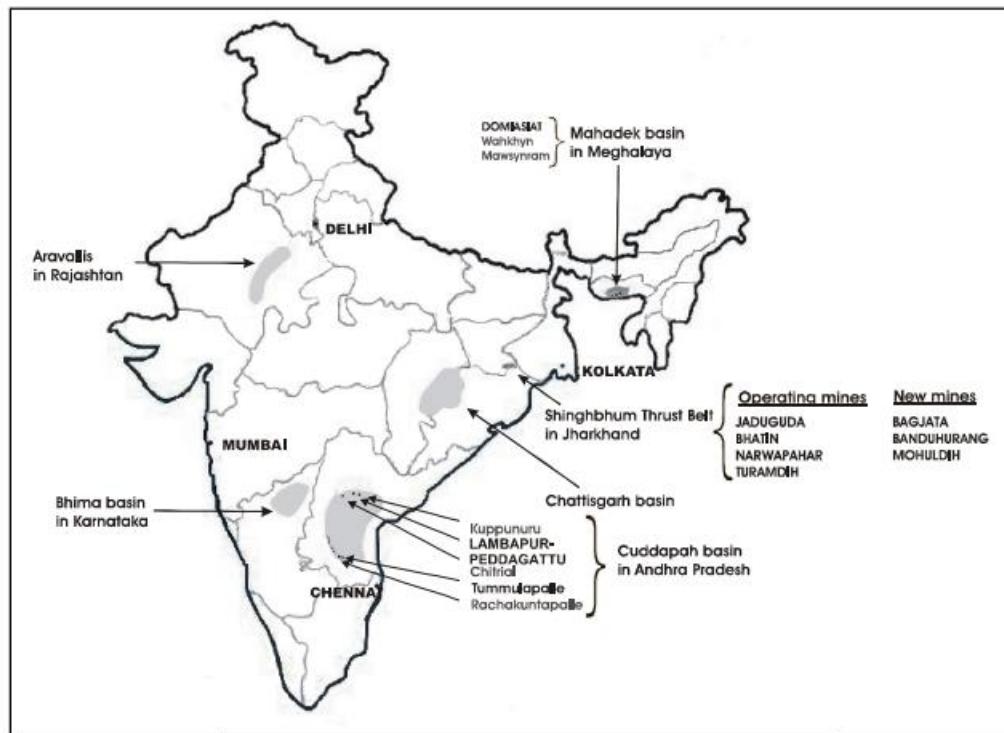
The Gas Authority of India Limited was set up in 1984 as a public sector undertaking to transport and market natural gas. It is obtained along with oil in all the oil fields but exclusive reserves have been located along the eastern coast as well as (Tamil Nadu, Odisha and Andhra Pradesh), Tripura, Rajasthan and off-shore wells in Gujarat and Maharashtra.


Crude petroleum occurs in sedimentary rocks of the tertiary period. Oil exploration and production was systematically taken up after the Oil and Natural Gas Commission was set up in 1956. Till then, the Digboi in Assam was the only oil producing region but the scenario has changed after 1956. In recent years, new oil deposits have been found at the extreme western and eastern parts of the country. In Assam, Digboi, Naharkatiya and Moran are important oil producing areas. The major oil fields of Gujarat are Ankaleshwar, Kalol, Mehsana, Nawagam, Kosamba and

Non-Conventional Energy Sources

Fossil fuel sources, such as coal, petroleum, natural gas and nuclear energy use exhaustible raw materials. Sustainable energy resources are only the renewable energy sources like solar, wind, hydro geothermal and biomass. These energy sources are more equitably distributed and environmental friendly. The non-conventional energy sources will provide more sustained, eco-friendly cheaper energy after the initial cost is taken care of.

Nuclear Energy Resources


Nuclear energy has emerged as a viable source in recent times. Important minerals used for the generation of nuclear energy are uranium and thorium. Uranium deposits occur in the Dharwar rocks. Geographically, uranium ores are known to occur in several locations along the Singbhum Copper belt. It is also found in Udaipur, Alwar and Jhunjhunu districts of Rajasthan, Durg district of Chhattisgarh, Bhandara district of Maharashtra and Kullu district of Himachal Pradesh. Thorium is mainly obtained from monazite and ilmenite in the beach sands along the coast of Kerala and Tamil Nadu. World's richest monazite deposits occur in Palakkad and Kollam districts of Kerala, near Vishakhapatnam in Andhra Pradesh and Mahanadi river delta in Odisha.

Atomic Energy Commission was established in 1948, progress could be made only after the establishment of the Atomic Energy Institute at Trombay in 1954 which was renamed as the Bhabha Atomic Research Centre in 1967. The important nuclear power projects are Tarapur (Maharashtra), Rawatbhata near Kota (Rajasthan), Kalpakkam (Tamil Nadu), Narora (Uttar Pradesh), Kaiga (Karnataka) and Kakrapara (Gujarat).

According to GlobalData, India is the world's ninth-largest producer of uranium in 2022, with output up by 0.26% on 2021. Over the five years to 2021, production from India increased by a CAGR of 10% and is expected to rise by a CAGR of 1% between 2022 and 2026. Global Data uses proprietary data and analytics to provide a complete picture of this market in its Global Uranium Mining to 2026 report

India accounts for 1% of global production, with the largest producers being Kazakhstan, Canada, Namibia and Australia.

Solar Energy

Sun rays tapped in photovoltaic cells can be converted into energy, known as solar energy. The two effective processes considered to be very effective to tap solar energy are photovoltaics and solar thermal technology. Solar thermal technology has some relative advantages over all other non-renewable energy sources. It is cost competitive, environment friendly and easy to construct. Solar energy is 7 per cent more effective than coal or oil based plants and 10 per cent more effective than nuclear plants. It is generally used more in appliances like heaters, crop dryers, cookers, etc. The western part of India has greater potential for the development of solar energy in Gujarat and Rajasthan.

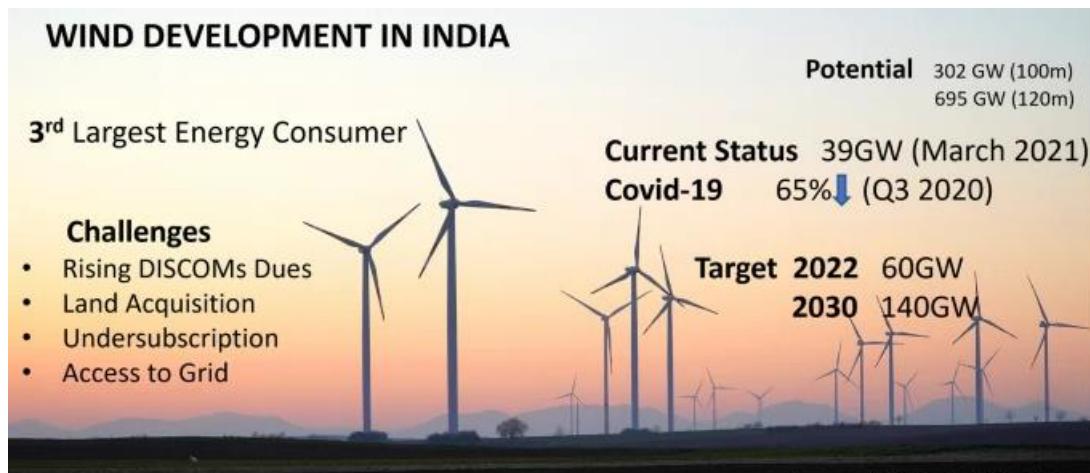
The Sun has been worshiped as a life-giver to our planet since ancient times. The industrial ages gave us the understanding of sunlight as an energy source. India is endowed with vast solar energy potential. About 5,000 trillion kWh per year energy is incident over India's land area with most parts receiving 4-7 kWh per sq. m per day. Solar photovoltaic power can effectively be harnessed providing huge scalability in India. Solar also provides the ability to generate power on a distributed basis and enables rapid capacity addition with short lead times. Off-grid decentralized and low-temperature applications will be advantageous from a rural application

perspective and meeting other energy needs for power, heating and cooling in both rural and urban areas. From an energy security perspective, solar is the most secure of all sources, since it is abundantly available. Theoretically, a small fraction of the total incident solar energy (if captured effectively) can meet the entire country's power requirements.

There has been a visible impact of solar energy in the Indian energy scenario during the last few years. Solar energy based decentralized and distributed applications have benefited millions of people in Indian villages by meeting their cooking, lighting and other energy needs in an environment friendly manner. The social and economic benefits include reduction in drudgery among rural women and girls engaged in the collection of fuel wood from long distances and cooking in smoky kitchens, minimization of the risks of contracting lung and eye ailments, employment generation at village level, and ultimately, the improvement in the standard of living and creation of opportunity for economic activities at village level. Further, solar energy sector in India has emerged as a significant player in the grid connected power generation capacity over the years. It supports the government agenda of sustainable growth, while, emerging as an integral part of the solution to meet the nation's energy needs and an essential player for energy security.

National Institute of Solar Energy has assessed the Country's solar potential of about 748 GW assuming 3% of the waste land area to be covered by Solar PV modules. Solar energy has taken a central place in India's National Action Plan on Climate Change with National Solar Mission as one of the key Missions. **National Solar Mission (NSM)** was launched on 11th January, 2010. NSM is a major initiative of the Government of India with active participation from States to promote ecological sustainable growth while addressing India's energy security challenges. It will also constitute a major contribution by India to the global effort to meet the challenges of climate change. The Mission's objective is to establish India as a global leader in solar energy by creating the policy conditions for solar technology diffusion across the country as quickly as possible. The Mission targets installing 100 GW grid-connected solar power plants by the year 2022. This is line with India's Intended Nationally Determined Contributions (INDCs) target to achieve about 40 percent cumulative electric power installed capacity from non-fossil fuel based energy resources and to reduce the emission intensity of its GDP by 33 to 35 percent from 2005 level by 2030.

In order to achieve the above target, Government of India have launched various schemes to encourage generation of solar power in the country like Solar Park Scheme, VGF Schemes, CPSU Scheme, Defence Scheme, Canal bank & Canal top Scheme, Bundling Scheme, Grid Connected Solar Rooftop Scheme etc.


Various policy measures undertaken included declaration of trajectory for Renewable Purchase Obligation (RPO) including Solar, Waiver of Inter State Transmission System (ISTS) charges and losses for inter-state sale of solar and wind power for projects to be commissioned up to March 2022, Must run status, Guidelines for procurement of solar power through tariff based competitive bidding process, Standards for deployment of Solar Photovoltaic systems and devices, Provision of roof top solar and Guidelines for development of smart cities, Amendments in building bye-laws for mandatory provision of roof top solar for new construction or higher Floor Area Ratio, Infrastructure status for solar projects, Raising tax free solar bonds, Providing long tenor loans from multi-lateral agencies, etc.

Wind Energy

Wind energy is absolutely pollution free, inexhaustible source of energy. The mechanism of energy conversion from blowing wind is simple. The kinetic energy of wind, through turbines is converted into electrical energy. The permanent wind systems such as the trade winds, westerlies and seasonal wind like monsoon have been used as source of energy. Besides these, local winds, land and sea breezes can also be used to produce electricity.

India, already has started generating wind energy. It has an ambitious programme to install 250 wind-driven turbines with a total capacity of 45 megawatts, spread over 12 suitable locations, specially in coastal areas. The Ministry of Non-conventional Sources of Energy is developing wind energy in India to lessen the burden of oil import bill. The country's potential of wind power generation exceeds 50,000 megawatts, of which one fourth can be easily harnessed. In Rajasthan, Gujarat, Maharashtra and Karnataka, favourable conditions for wind energy exist.

In the early 1980's, the Department of Non-conventional Energy Sources (DNES) came into existence with the aim to reduce the dependence of primary energy sources like coal, oil etc. in view of the Country's energy security. The DNES became Ministry of Non-conventional Energy Sources (MNES) in the year 1992 and now from 2006, the Ministry was renamed as Ministry of New & Renewable Energy (MNRE). The growth of Renewable Energy in India is enormous and Wind Energy proves to be the most effective solution to the problem of depleting fossil fuels, importing of coal, greenhouse gas emission, environmental pollution etc. Wind energy as a renewable, non-polluting and affordable source directly avoids dependency of fuel and transport, can lead to green and clean electricity.

With an installed capacity of 42633 MW (March 2023) of Wind Energy, Renewable Energy Sources (excluding large Hydro) currently accounts for 30.08% (125160 MW) of India's overall installed power capacity of 416059 MW (31.03.2023). Wind Energy holds the major portion of 34.06% of total RE capacity among renewable and continued as the major supplier of clean energy.

The Government of India has fixed a target of 500 GW of Renewable Energy by 2030 out of which 140 GW will be from Wind. The Wind Potential in India was first estimated by National Institute of Wind Energy (NIWE) at 50m hub-height i.e. 49 GW but according to the survey at 80m hub height, the potential grows as much as 102 GW and 302GW at 100 Meter hub height. Further a new study by NIWE at 120m height has estimated a potential 695GW. One of the major advantages of wind energy is its inherent strength to support rural employment and uplift of rural economy. Further, unlike all other sources of power, wind energy does not consume any water- which in itself will become a scarce commodity. Overall the future of Wind Energy in India is bright as energy security and self-sufficiency is identified as the major driver. The biggest advantage with wind energy is that the fuel is free, and also it doesn't produce CO2 emission. Wind farm can be built reasonably fast, the wind farm land can be used for farming as well thus serving dual purpose, and it is cost-effective as compare to other forms of renewable energy.

Tidal and Wave Energy

Ocean currents are the store-house of infinite energy. Since the beginning of seventeenth and eighteenth century, persistent efforts were made to create a more efficient energy system from the ceaseless tidal waves and ocean current. Large tidal waves are known to occur along the west coast of India. Hence, India has great potential for the development of tidal energy along the coasts but so far these have not yet been utilised.

Geothermal Energy

When the magma from the interior of earth, comes out on the surface, tremendous heat is released. This heat energy can successfully be tapped and converted to electrical energy. Apart from this, the hot water that gushes out through the geyser wells is also used in the generation of thermal energy. It is popularly known as Geothermal energy. This energy is now considered to be one of the key energy sources which can be developed as an alternate source. The hot springs and geysers are being used since medieval period. In India, a geothermal energy plant has been commissioned at Manikaran in Himachal Pradesh. The first successful (1890) attempt to tap the underground heat was made in the city of Boise, Idaho (U.S.A.), where a hot water pipe network was built to give heat to the surrounding buildings. This plant is still working.

Bio-energy

Bio-energy refers to energy derived from biological products which includes agricultural residues, municipal, industrial and other wastes. Bioenergy is a potential source of energy conversion. It can be converted into electrical energy, heat energy or gas for cooking. It will also process the waste and garbage and produce energy. This will improve economic life of rural areas in developing countries, reduce environmental pollution, enhance self-reliance and reduce pressure on fuel wood. One such project converting municipal waste into energy is Okhla in Delhi.
